Telegram Group & Telegram Channel
Подходы к задаче ранжирования

🔸 Pointwise, он же поточечный. Мы будем рассматривать релевантность как абсолютное мерило и будем штрафовать модель за абсолютную разность между предсказанной релевантностью и той, которую мы знаем по обучающей выборке. Например, асессор поставил документу оценку 3, а мы бы сказали 2, поэтому штрафуем модель на 1.
🔸 Pairwise, попарный. Мы будем сравнивать документы друг с другом. Например, в обучающей выборке есть два документа, и нам известно, какой из них более релевантный по данному запроса. Тогда мы будем штрафовать модель, если она более релевантному поставила прогноз ниже, чем менее релевантному, то есть неправильно сранжировала пару.
🔸 Listwise. Он тоже основан на относительных релевантностях, но уже не внутри пар: мы ранжируем моделью всю выдачу и оцениваем результат — если на первом месте оказался не самый релевантный документ, то получаем большой штраф.



tg-me.com/ds_interview_lib/35
Create:
Last Update:

Подходы к задаче ранжирования

🔸 Pointwise, он же поточечный. Мы будем рассматривать релевантность как абсолютное мерило и будем штрафовать модель за абсолютную разность между предсказанной релевантностью и той, которую мы знаем по обучающей выборке. Например, асессор поставил документу оценку 3, а мы бы сказали 2, поэтому штрафуем модель на 1.
🔸 Pairwise, попарный. Мы будем сравнивать документы друг с другом. Например, в обучающей выборке есть два документа, и нам известно, какой из них более релевантный по данному запроса. Тогда мы будем штрафовать модель, если она более релевантному поставила прогноз ниже, чем менее релевантному, то есть неправильно сранжировала пару.
🔸 Listwise. Он тоже основан на относительных релевантностях, но уже не внутри пар: мы ранжируем моделью всю выдачу и оцениваем результат — если на первом месте оказался не самый релевантный документ, то получаем большой штраф.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/35

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA